103 research outputs found

    Semiparametric Bayesian models for human brain mapping

    Get PDF
    Functional magnetic resonance imaging (fMRI) has led to enormous progress in human brain mapping. Adequate analysis of the massive spatiotemporal data sets generated by this imaging technique, combining parametric and non-parametric components, imposes challenging problems in statistical modelling. Complex hierarchical Bayesian models in combination with computer-intensive Markov chain Monte Carlo inference are promising tools.The purpose of this paper is twofold. First, it provides a review of general semiparametric Bayesian models for the analysis of fMRI data. Most approaches focus on important but separate temporal or spatial aspects of the overall problem, or they proceed by stepwise procedures. Therefore, as a second aim, we suggest a complete spatiotemporal model for analysing fMRI data within a unified semiparametric Bayesian framework. An application to data from a visual stimulation experiment illustrates our approach and demonstrates its computational feasibility

    Вплив природних та штучних радіонуклідів на стан здоров'я людини (огляд)

    Get PDF
    Здійснено огляд основних етапів досліджень з впливу природних та штучних радіонуклідів на стан здоров'я людини. Розглянуто методи профілактики захворювань спровокованих радіоактивним випромінюванням. На основі узагальнення наукової літератури про вплив радіонуклідів на людину запропоновано можливі шляхи розширення лікувальних процедур з використанням водних розчинів, які містять іони калію і мають радіоактивність в діапазоні 20-400 Бк/л, що спричинено радіонуклідом 40К і залежить від концентрації іонів калію

    Image reduction pipeline for the detection of variable sources in highly crowded fields

    Get PDF
    We present a reduction pipeline for CCD (charge-coupled device) images which was built to search for variable sources in highly crowded fields like the M31 bulge and to handle extensive databases due to large time series. We describe all steps of the standard reduction in detail with emphasis on the realisation of per pixel error propagation: Bias correction, treatment of bad pixels, flatfielding, and filtering of cosmic rays. The problems of conservation of PSF (point spread function) and error propagation in our image alignment procedure as well as the detection algorithm for variable sources are discussed: We build difference images via image convolution with a technique called OIS (Alard & Lupton, 1998), proceed with an automatic detection of variable sources in noise dominated images and finally apply a PSF-fitting, relative photometry to the sources found. For the WeCAPP project (Riffeser et al., 2001) we achieve 3 sigma detections for variable sources with an apparent brightness of e.g. m = 24.9 mag at their minimum and a variation of dm = 2.4 mag (or m = 21.9 mag brightness minimum and a variation of dm = 0.6 mag) on a background signal of 18.1 mag/arcsec^2 based on a 500 s exposure with 1.5 arcsec seeing at a 1.2 m telescope. The complete per pixel error propagation allows us to give accurate errors for each measurement.Comment: 15 pages, 4 figures, accepted by A&

    Detection efficiency and photometry in supernova surveys - the Stockholm VIMOS Supernova Survey I

    Full text link
    The aim of the work presented in this paper is to test and optimise supernova detection methods based on the optimal image subtraction technique. The main focus is on applying the detection methods to wide field supernova imaging surveys and in particular to the Stockholm VIMOS Supernova Survey (SVISS). We have constructed a supernova detection pipeline for imaging surveys. The core of the pipeline is image subtraction using the ISIS 2.2 package. Using real data from the SVISS we simulate supernovae in the images, both inside and outside galaxies. The detection pipeline is then run on the simulated frames and the effects of image quality and subtraction parameters on the detection efficiency and photometric accuracy are studied. The pipeline allows efficient detection of faint supernovae in the deep imaging data. It also allows controlling and correcting for possible systematic effects in the SN detection and photometry. We find such a systematic effect in the form of a small systematic flux offset remaining at the positions of galaxies in the subtracted frames. This offset will not only affect the photometric accuracy of the survey, but also the detection efficiencies. Our study has shown that ISIS 2.2 works well for the SVISS data. We have found that the detection efficiency and photometric accuracy of the survey are affected by the stamp selection for the image subtraction and by host galaxy brightness. With our tools the subtraction results can be further optimised, any systematic effects can be controlled and photometric errors estimated, which is very important for the SVISS, as well as for future SN searches based on large imaging surveys such as Pan-STARRS and LSST.Comment: 17 pages, 10 figure, accepted for publication in A&

    PAndromeda - first results from the high-cadence monitoring of M31 with Pan-STARRS 1

    Full text link
    The Pan-STARRS 1 (PS1) survey of M31 (PAndromeda) is designed to identify gravitational microlensing events, caused by bulge and disk stars (self-lensing) and by compact matter in the halos of M31 and the Milky Way (halo lensing, or lensing by MACHOs). With the 7 deg2 FOV of PS1, the entire disk of M31 can be imaged with one single pointing. Our aim is to monitor M31 with this wide FOV with daily sampling (20 mins/day). In the 2010 season we acquired in total 91 nights towards M31, with 90 nights in the rP1 and 66 nights in the iP1. The total integration time in rP1 and iP1 are 70740s and 36180s, respectively. As a preliminary analysis, we study a 40'\times40' sub-field in the central region of M31, a 20'\times20' sub-field in the disk of M31 and a 20'\times20' sub-field for the investigation of astrometric precision. We demonstrate that the PSF is good enough to detect microlensing events. We present light curves for 6 candidate microlensing events. This is a competitive rate compared to previous M31 microlensing surveys. We finally also present one example light curve for Cepheids, novae and eclipsing binaries in these sub-fields.Comment: 41 pages, 19 figures, 4 tables. Published in A

    Chronic kidney disease and valvular heart disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies conference

    Get PDF
    Chronic kidney disease (CKD) is a major risk factor for valvular heart disease (VHD). Mitral annular and aortic valve calcifications are highly prevalent in CKD patients and commonly lead to valvular stenosis and regurgitation, as well as complications including conduction system abnormalities and endocarditis. VHD, especially mitral regurgitation and aortic stenosis, is associated with significantly reduced survival among CKD patients. Knowledge related to VHD in the general population is not always applicable to CKD patients because the pathophysiology may be different, and CKD patients have a high prevalence of comorbid conditions and elevated risk for periprocedural complications and mortality. This Kidney Disease: Improving Global Outcomes (KDIGO) review of CKD and VHD seeks to improve understanding of the epidemiology, pathophysiology, diagnosis, and treatment of VHD in CKD by summarizing knowledge gaps, areas of controversy, and priorities for research

    Chronic kidney disease and valvular heart disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference

    Get PDF
    Chronic kidney disease (CKD) is a major risk factor for valvular heart disease (VHD). Mitral annular and aortic valve calcifications are highly prevalent in CKD patients and commonly lead to valvular stenosis and regurgitation, as well as complications including conduction system abnormalities and endocarditis. VHD, especially mitral regurgitation and aortic stenosis, is associated with significantly reduced survival among CKD patients. Knowledge related to VHD in the general population is not always applicable to CKD patients because the pathophysiology may be different, and CKD patients have a high prevalence of comorbid conditions and elevated risk for periprocedural complications and mortality. This Kidney Disease: Improving Global Outcomes (KDIGO) review of CKD and VHD seeks to improve understanding of the epidemiology, pathophysiology, diagnosis, and treatment of VHD in CKD by summarizing knowledge gaps, areas of controversy, and priorities for research

    Molecular imaging of inflammation and intraplaque vasa vasorum: A step forward to identification of vulnerable plaques?

    Get PDF
    Current developments in cardiovascular biology and imaging enable the noninvasive molecular evaluation of atherosclerotic vascular disease. Intraplaque neovascularization sprouting from the adventitial vasa vasorum has been identified as an independent predictor of intraplaque hemorrhage and plaque rupture. These intraplaque vasa vasorum result from angiogenesis, most likely under influence of hypoxic and inflammatory stimuli. Several molecular imaging techniques are currently available. Most experience has been obtained with molecular imaging using positron emission tomography and single photon emission computed tomography. Recently, the development of targeted contrast agents has allowed molecular imaging with magnetic resonance imaging, ultrasound and computed tomography. The present review discusses the use of these molecular imaging techniques to identify inflammation and intraplaque vasa vasorum to identify vulnerable atherosclerotic plaques at risk of rupture and thrombosis. The available literature on molecular imaging techniques and molecular targets associated with inflammation and angiogenesis is discussed, and the clinical applications of molecular cardiovascular imaging and the use of molecular techniques for local drug delivery are addressed

    Future directions for therapeutic strategies in post-ischaemic vascularization: a position paper from European Society of Cardiology Working Group on Atherosclerosis and Vascular Biology

    Get PDF
    Modulation of vessel growth holds great promise for treatment of cardiovascular disease. Strategies to promote vascularization can potentially restore function in ischaemic tissues. On the other hand, plaque neovascularization has been shown to associate with vulnerable plaque phenotypes and adverse events. The current lack of clinical success in regulating vascularization illustrates the complexity of the vascularization process, which involves a delicate balance between pro- and anti-angiogenic regulators and effectors. This is compounded by limitations in the models used to study vascularization that do not reflect the eventual clinical target population. Nevertheless, there is a large body of evidence that validate the importance of angiogenesis as a therapeutic concept. The overall aim of this Position Paper of the ESC Working Group of Atherosclerosis and Vascular biology is to provide guidance for the next steps to be taken from pre-clinical studies on vascularization towards clinical application. To this end, the current state of knowledge in terms of therapeutic strategies for targeting vascularization in post-ischaemic disease is reviewed and discussed. A consensus statement is provided on how to optimize vascularization studies for the identification of suitable targets, the use of animal models of disease, and the analysis of novel delivery methods
    corecore